
SIGARCH Computer Architecture News, 30(1), ACM, March 2002. To appear.

 1 of 3

Disjoint Eager Execution:
What It Is / What It Is Not

Augustus K. Uht

Abstract� Disjoint Eager Execution (DEE) has been cited and

described many times since its introduction in 1992, often
incorrectly. This paper clarifies what DEE is and how it
operates, as well as pointing out common DEE misconceptions.

Index Terms� Microarchitecture, high-performance
computing, control speculation, eager execution.

I. INTRODUCTION

DISJOINT EAGER EXECUTION (DEE) was initially
proposed[9, 10] to realize the performance promised by

limit studies of Instruction Level Parallelism (ILP), in
particular Riseman and Foster�s work[4] and Lam and
Wilson�s work[3]. Both works� conclusions were that if
branch effects[14] could be reduced or eliminated, much ILP
could be extracted with an ensuing increase in performance.
That was the good news; the bad news was that there was no
known way of obtaining this ILP without a prohibitive
hardware cost.
 DEE was characterized by performance measurements [13]
in 1995. Since then it has been gratifying to see it cited
several times and spawn other work. It has been less
gratifying to see that I did not do a good enough job of
explaining DEE in that paper, with the end result that DEE is
often misunderstood or incorrectly described. This has been
true regardless of the experience of the citers.

 The purpose of this paper is to briefly present an
explanation of the DEE concept in order to clarify aspects of it
that may have been misunderstood in the past.

II. WHAT DEE IS
Several researchers have explored a variety of techniques to

try and extract high ILP from general programs. Most of the
existing techniques have focused on simple branch prediction
and Single Path (SP) speculation (see Fig. 1). Riseman and
Foster proposed Eager Execution (EE), perhaps the simplest
form of multipath execution (see Fig. 1). In EE both paths of a
branch are taken; if another branch is encountered before the
first is resolved (executed), execution also proceeds down
both paths of the second branch. The problem with SP is that

the likelihood of needing the code at the end of multiple levels
of predictions approaches zero, so the performance is not
good. However, the hardware cost increases linearly with the
number of branches predicted. The problem with EE is its
exponential increase in cost with the number of branch levels
eagerly executed. With infinite hardware, performance is the
same as that with an oracle, and is very high. However, the
cost is prohibitive even to get a small fraction of the peak
performance.

So what should be done? Several approaches were
investigated without success until the problem was more
carefully examined. Where does one want to put one�s
resources to get the best performance? �Obviously,� at the
most likely code to be executed. But this is not SP, nor is it
EE; it is something different. It is DEE.

Now let�s take the name apart to see what it means:
1. �execution�: speculative execution.
2. �eager�: go down both paths of a branch.
3. �disjoint�: go down each path of a branch at

different times -- when the path is the most likely
to be executed among the paths that have not yet
received resources.

That last statement is true for all paths at all times. Put a
slightly different way, the DEE rule is: At all times, allocate
resources to the most likely paths to be executed over the
entire branch path space.

Now, we still need a predictor to tell us the predicted paths.
Furthermore, it is prohibitive to compute the path probabilities
every cycle (but see [1] for a proposal to do that). So what do
we do? The static DEE tree heuristic[13] says: assume every
branch is predicted with the same prediction accuracy (that is,
the average accuracy of the branch predictor as measured over
relevant benchmarks); then construct a DEE tree assuming the
average accuracy at each prediction point, and fix the tree
(somehow) in the hardware. Then let the tree follow or
�overlay� the dynamic code execution path, and assign
resources, including to spawned paths, as dictated by the
presence of the tree over the dynamic code.

See Fig. 2. for an illustration of the static DEE tree in
action. Note how the bottom of the tree is the first part of the
tree to encounter unexecuted code. Note further that if a
branch is encountered, its direction is predicted and execution
initially goes down only the predicted path, such as P. Then,
as execution proceeds, the tree moves down the dynamic path,
and eventually path P will be at a point in the tree (see C. in
Fig. 2.) where both paths of a branch are followed. At this
time, the likelihood of executing the not-predicted path of P is

This work was supported in part by the U.S. National Science Foundation

under Grants Nos. CCR-8910586 and MIP-9708183, and in part by the
University of Rhode Island Office of the Provost.

Augustus K. Uht is a Research Professor with the University of Rhode
Island, Department of Electrical and Computer Engineering, 4 East Alumni
Ave., Kingston, RI 02881 USA (telephone: +1-401-874-5431, e-mail:
mailto:uht@ele.uri.edu).

mailto:uht@ele.uri.edu

SIGARCH Computer Architecture News, 30(1), ACM, March 2002. To appear.

 2 of 3

G. DEE leads to exponential use of resources and is highly
wasteful of hardware.

greater than that of the current path just below the bottom of
the static tree, P�. At this time, and at this time only, the
branch associated with P spawns the branch�s other, not-
predicted and unexecuted path, which is then executed. As
branches resolve, the resources of non-executed paths, with all
of their children, are reallocated and the corresponding
execution results are discarded.

No, this is true of EE, not DEE. DEE uses Ο hardware
resources, where is the depth of speculation and

2(kL)
L 1k < .

H. DEE wastes resources because it uses them for not-
predicted paths; they could be better spent going deeper with
simple branch prediction (SP). This is what DEE is and how it is approximated with the

static DEE tree heuristic. No-no. You didn�t read the first part of this paper, or I�m still
not explaining it well enough. The code below the bottom of
the SP path is LESS likely to be executed than the higher-up
not-predicted paths. Hence, going deeper with SP WASTES
resources. This is true even with typical branch prediction
accuracies of 90+%. Also, due to the Amdahl effect, doing
DEE always helps.

III. WHAT DEE IS NOT
We now consider some of the misconceptions about DEE

that have occurred over the past several years.

A. DEE means: when you come to a branch, go down both
paths.
No, no, no and furthermore no. Remember, this is DISJOINT
eager execution. The likelihood is that the program won�t go
down the not-predicted path for some time after initially
encountering the branch and executing down its predicted
path.

REFERENCES
[1] T. F. Chen, "Supporting Highly Speculative Execution via Adaptive

Branch Trees," in Proceedings of the 4th Annual International Symposium on
High Performance Computer Architecture: IEEE, January 1998, pp. 185-194.

[2] J. Ferrante, K. Ottenstein, and J. Warren, "The Program Dependence
Graph and its Use in Optimization," ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319-349, July 1987. B. You can use DEE by itself. [3] M. S. Lam and R. P. Wilson, "Limits of Control Flow on Parallelism,"
in Proceedings of the 19th Annual International Symposium on Computer
Architecture. Gold Coast, Australia: IEEE and ACM, May 1992, pp. 46-57.

True, but not if you want to get the big gains. As demonstrated
in our 1995 paper[13], you also have to minimize control
dependencies as discussed in [14], originally postulated by
Tjaden[5] and formalized by Ferrante, et al [2] and this
author[6-8].

[4] E. M. Riseman and C. C. Foster, "The Inhibition of Potential
Parallelism by Conditional Jumps," IEEE Transactions on Computers, vol. C-
21, no. 12, pp. 1405-1411, December 1972.

[5] G. S. Tjaden, "Representation and Detection of Concurrency Using
Ordering Matrices," PhD thesis, The Johns Hopkins University, 1972.

C. DEE is only applicable to control speculation. [6] A. K. Uht, "Hardware Extraction of Low-Level Concurrency from
Sequential Instruction Streams," PhD thesis, Electrical and Computer
Engineering, Carnegie-Mellon University, Pittsburgh, December 1985.

False. It is possible that it could also be applied to data
speculation, although to my knowledge this has not yet
happened.

[7] A. K. Uht, "An Efficient Hardware Algorithm to Extract Concurrency
From General-Purpose Code," in Proceedings of the Nineteenth Annual
Hawaii International Conference on System Sciences, January 1986, pp. 41-
50. D. Using a confidence predictor gives the same results as

DEE. [8] A. K. Uht, "A Theory of Reduced and Minimal Procedural
Dependencies," IEEE Transactions on Computers, vol. 40, no. 6, pp. 681-692,
June 1991. Also in the tutorial ``Instruction-Level Parallel Processors'', Torng,
H.C., and Vassiliadis, S., Eds., IEEE Computer Society Press, 1995, pages
171-182.

Not very likely. First, confidence predictors aren�t that
good yet. Second, and more importantly, DEE with minimal
control dependencies helps eliminate or at least dramatically
reduce the slowdowns due to Amdahl�s Law[11]. Only going
down one path still leaves the non-zero possibility of a
misprediction and its concomitant penalty cycles, and then
speedup is substantially reduced due to the serialization
associated with those penalties (Amdahl's law). That is, it
always helps to do DEE, if it is done in the right way.

[9] A. K. Uht, "Extraction of Massive Instruction Level Parallelism,"
Department of Electrical Engineering, University of Rhode Island, Kingston,
RI 02881, Technical Report 1292-0001, December 1992.

[10] A. K. Uht, "Extraction of Massive Instruction Level Parallelism,"
ACM SIGARCH Computer Architecture News, vol. 21, no. 2 and 3, pp. (June)
5-12, March and June 1993.

[11] A. K. Uht, "Verification of ILP Speedups in the 10's for Disjoint
Eager Execution," Department of Electrical and Computer Engineering,
University of Rhode Island, Kingston, RI, Technical Report 0697-0001, Rev.
A, July 1997. Available via http://www.ele.uri.edu/~uht. E. DEE can only be used with backward branches. OR: only

with forward branches. [12] A. K. Uht, A. Khalafi, D. Morano, T. Wenisch, M. d. Alba, and D.
Kaeli, "Levo: IPC in the 10's via Resource Flow Computing," in Work-In-
Progress session, PACT-2001; appears in a special issue of IEEE TCCA
News, December 2001.

It makes no difference what kind of branches they are. This
only depends on the implementation. Ours realizes DEE for
both kinds of branches. [13] A. K. Uht and V. Sindagi, "Disjoint Eager Execution: An Optimal

Form of Speculative Execution," in Proceedings of the 28th International
Symposium on Microarchitecture (MICRO-28). Ann Arbor, MI,
November/December 1995, pp. 313-325.

F. DEE dramatically increases the required instruction fetch
bandwidth, hence reducing performance.
Not if you do it right: load instructions in the static order and
use loaded instructions for both paths of the branches. See:
[12, 13].

[14] A. K. Uht, V. Sindagi, and S. Somanathan, "Branch Effect
Reduction Techniques," IEEE COMPUTER, vol. 30, no. 5, pp. 71-81, May
1997.

http://www.ele.uri.edu/~uht

SIGARCH Computer Architecture News, 30(1), ACM, March 2002. To appear.

 3 of 3

-each line segment with arrow represents a branch path
-left-pointing paths are Predicted paths
-right-pointing paths are Not-Predicted paths
-an uncircled number on a path is the overall or Cumulative

Probability of the path being executed (cp)

Disjoint Eager Execution
(DEE)

3

2 6

1 4

5

.7

.24

.3

.49 .21

.34

3

2

4
6

1

5

Eager Execution

.7

.49

.3

.09.21

(EE)

.21

6

2

4

5
Single Path

(SP)

.17

.49

.7

.34

.24

1

3

.12

-circled path numbers indicate order of resource assignment
-overall resources fixed at 6 branch paths
-all of the branches are pending

branches, for the sake of illustration
-branch prediction accuracy = BPA = 70% = 0.7 for all

.21

7

Fig. 1. Three types of control speculation. (Note: this is a modified version of figures published previously by the author.)

wall clock time

program
-ordered

execution tim
e

A. Start:
nothing

executed.

B. Three
branch
paths
being

executed.

MP

C. Mispre-
diction (MP)

reached.
Lowest three

DEE-tree
paths now
executing

wrong code.

D. DEE-tree
starts to
execute

not-predicted
path.

E. DEE-tree
continues to

execute down
not-predicted

path.

F. Two
branches (R)
resolve, thus:

incorrect
executions
discarded,
DEE-tree

re-allocated;
execution resumes.

R

R R

R

NOTES:

1. Each arrow is a branch path.
2. Branch targets are at the arrowheads.
3. Solid arrows comprise the static DEE tree.
4. Dashed arrows comprise the dynamic code execution.
5. Vertical arrows (pointed down) are paths.
6. Angled arrows (to the right) are paths.

predicted
predictednot-

7. Branch prediction accuracy of about 70% assumed
 for illustration purposes.
8. Dynamic path has one misprediction.
9. At F., DEE is two branch paths ahead in execution
 after the misprediction, as compared to how SP
 would have performed. This does not include
 pipeline effects.

P P P

P’

Fig. 2. Static DEE tree in motion. (P and P� are referred to in the text.)

	INTRODUCTION
	What DEE Is
	What DEE Is Not
	DEE means: when you come to a branch, go down both paths.
	You can use DEE by itself.
	DEE is only applicable to control speculation.
	Using a confidence predictor gives the same results as DEE.
	DEE can only be used with backward branches. OR: only with forward branches.
	DEE dramatically increases the required instruction fetch bandwidth, hence reducing performance.
	DEE leads to exponential use of resources and is highly wasteful of hardware.
	DEE wastes resources because it uses them for not-predicted paths; they could be better spent going deeper with simple branch prediction (SP).

