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Disjoint Eager Execution:  
What It Is / What It Is Not 

Augustus K. Uht 

  
Abstract� Disjoint Eager Execution (DEE) has been cited and 

described many times since its introduction in 1992, often 
incorrectly.  This paper clarifies what DEE is and how it 
operates, as well as pointing out common DEE misconceptions.  
 

Index Terms� Microarchitecture, high-performance 
computing, control speculation, eager execution. 

I. INTRODUCTION 

DISJOINT EAGER EXECUTION (DEE) was initially 
proposed[9, 10] to realize the performance promised by 

limit studies of Instruction Level Parallelism (ILP), in 
particular Riseman and Foster�s work[4] and Lam and 
Wilson�s work[3]. Both works� conclusions were that if 
branch effects[14] could be reduced or eliminated, much ILP 
could be extracted with an ensuing increase in performance. 
That was the good news; the bad news was that there was no 
known way of obtaining this ILP without a prohibitive 
hardware cost.  
 DEE was characterized by performance measurements [13] 
in 1995.  Since then it has been gratifying to see it cited 
several times and spawn other work. It has been less 
gratifying to see that I did not do a good enough job of 
explaining DEE in that paper, with the end result that DEE is 
often misunderstood or incorrectly described.  This has been 
true regardless of the experience of the citers. 

 The purpose of this paper is to briefly present an 
explanation of the DEE concept in order to clarify aspects of it 
that may have been misunderstood in the past. 

II. WHAT DEE IS 
Several researchers have explored a variety of techniques to 

try and extract high ILP from general programs.  Most of the 
existing techniques have focused on simple branch prediction 
and Single Path (SP) speculation (see Fig. 1). Riseman and 
Foster proposed Eager Execution (EE), perhaps the simplest 
form of multipath execution (see Fig. 1). In EE both paths of a 
branch are taken;  if another branch is encountered before the 
first is resolved (executed), execution also proceeds down 
both paths of the second branch. The problem with SP is that 

the likelihood of needing the code at the end of multiple levels 
of predictions approaches zero, so the performance is not 
good. However, the hardware cost increases linearly with the 
number of branches predicted. The problem with EE is its 
exponential increase in cost with the number of branch levels 
eagerly executed. With infinite hardware, performance is the 
same as that with an oracle, and is very high. However, the 
cost is prohibitive even to get a small fraction of the peak 
performance.  

So what should be done?  Several approaches were 
investigated without success until the problem was more 
carefully examined. Where does one want to put one�s 
resources to get the best performance? �Obviously,� at the 
most likely code to be executed. But this is not SP, nor is it 
EE; it is something different. It is DEE. 

Now let�s take the name apart to see what it means: 
1. �execution�:  speculative execution. 
2. �eager�: go down both paths of a branch. 
3. �disjoint�: go down each path of a branch at 

different times -- when the path is the most likely 
to be executed among the paths that have not yet 
received resources. 

That last statement is true for all paths at all times.  Put a 
slightly different way, the DEE rule is: At all times, allocate 
resources to the most likely paths to be executed over the 
entire branch path space. 

Now, we still need a predictor to tell us the predicted paths. 
Furthermore, it is prohibitive to compute the path probabilities 
every cycle (but see [1] for a proposal to do that).  So what do 
we do? The static DEE tree heuristic[13] says: assume every 
branch is predicted with the same prediction accuracy (that is, 
the average accuracy of the branch predictor as measured over 
relevant benchmarks); then construct a DEE tree assuming the 
average accuracy at each prediction point, and fix the tree 
(somehow) in the hardware. Then let the tree follow or 
�overlay� the dynamic code execution path, and assign 
resources, including to spawned paths, as dictated by the 
presence of the tree over the dynamic code.  

See Fig. 2. for an illustration of the static DEE tree in 
action.  Note how the bottom of the tree is the first part of the 
tree to encounter unexecuted code. Note further that if a 
branch is encountered, its direction is predicted and execution 
initially goes down only the predicted path, such as P.  Then, 
as execution proceeds, the tree moves down the dynamic path, 
and eventually path P will be at a point in the tree (see C. in 
Fig. 2.) where both paths of a branch are followed. At this 
time, the likelihood of executing the not-predicted path of P is 
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G. DEE leads to exponential use of resources and is highly 
wasteful of hardware. 

greater than that of the current path just below the bottom of 
the static tree, P�.  At this time, and at this time only, the 
branch associated with P spawns the branch�s other, not- 
predicted and unexecuted path, which is then executed.  As 
branches resolve, the resources of non-executed paths, with all 
of their children, are reallocated and the corresponding 
execution results are discarded. 

No, this is true of EE, not DEE.  DEE uses Ο hardware 
resources, where  is the depth of speculation and 

2(kL )
L 1k < . 

H. DEE wastes resources because it uses them for not-
predicted paths; they could be better spent going deeper with 
simple branch prediction (SP). This is what DEE is and how it is approximated with the 

static DEE tree heuristic. No-no. You didn�t read the first part of this paper, or I�m still 
not explaining it well enough.  The code below the bottom of 
the SP path is LESS likely to be executed than the higher-up 
not-predicted paths.  Hence, going deeper with SP WASTES 
resources.  This is true even with typical branch prediction 
accuracies of 90+%.  Also, due to the Amdahl effect, doing 
DEE always helps. 

III. WHAT DEE IS NOT 
We now consider some of the misconceptions about DEE 

that have occurred over the past several years. 

A. DEE means: when you come to a branch, go down both 
paths. 
No, no, no and furthermore no. Remember, this is DISJOINT 
eager execution.  The likelihood is that the program won�t go 
down the not-predicted path for some time after initially 
encountering the branch and executing down its predicted 
path. 
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-each line segment with arrow represents a branch path
-left-pointing paths are Predicted paths
-right-pointing paths are Not-Predicted paths
-an uncircled number on a path is the overall or Cumulative

Probability of the path being executed (cp)
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Fig. 1.  Three types of control speculation. (Note: this is a modified version of figures published previously by the author.) 
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NOTES:

1.  Each arrow is a branch path.
2.  Branch targets are at the arrowheads.
3.  Solid arrows comprise the static DEE tree.
4.  Dashed arrows comprise the dynamic code execution.
5.  Vertical arrows (pointed down) are  paths.
6.  Angled arrows (to the right) are  paths.

predicted
predictednot-

7.  Branch prediction accuracy of about 70% assumed
         for illustration purposes.
8.  Dynamic path has one misprediction.
9.  At F., DEE is two branch paths ahead in execution 
        after the misprediction, as compared to how SP
        would have performed.   This does not include 
        pipeline effects.
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Fig. 2.  Static DEE tree in motion. (P and P� are referred to in the text.) 
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